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Abstract

In this paper, a fast atmospheric and surface temperature retrieval a'gorithm is developed for the

high resolution Infrared Atmospheric Sounding Interferometer (IASI, space-borne instrument.

This algorithm is constructed on the basis of a neural network techn:que that has been

regularized by introduction of a priori information. The performance of the resulting fast and

accurate inverse radiative transfer model is presented for a large diversified dataset of radiosonde

atmospheres including rare events. Two configurations are considered: a tropical-airmass

specialized scheme and an all-air-masses scheme.



1. Introduction

The Infrared Atmospheric Sounding Interferome-

ter (IASI) is a high resolution (0.25 crn -1) Fourier

transform spectrometer scheduled for flight in 2005

on the European polar METeorological Operational

Platform (METEOP-1) satellite funded by the EU-

ropean organization for METeorological SATellites

(EUMETSAT) and the European Space Agency (ESA)
member states. This instrument is intended to re-

place the High Resolution Infrared Radiation Sounder

(HIRS) as the operational infrared sounder and is ex-

pected to reach accuracies of 1 K in temperature and

10 % in water vapor with vertical resolutions of 1 km

and 2 kms respectively. IASI, jointly developed by
the Centre National d't_tudes Sp_tiales (CNES) and

EUMETSAT, provides spectral co erage from 3.5 #m

and 15.5 /_m at considerably higter spectral resolu-

tion than HIRS and, together with the Advanced Mi-

crowave Sounding Unit (AMSU), _ expected to lead

to dramatic improvements in the a,:curacy and height
resolution of remotely sensed temp,_rature and humid-

ity profiles and ozone amount.

The goal of this study is to pres,.nt an inversion al-

gorithm that retrieves geophysical variables from IASI

measurements. We are confronted, in this work, with

problems related to the ill-posed character of the in-

verse problem, the sensitivity to noise and, specific

to IASI, the data dimension. The Multi-Layer Per-

ceptron (MLP) technique is particularly interesting

to solve this kind of problems. Such an approach has

already been developed by the Atmospheric Radia-
tion Analysis (ARA) group of LMD for HIPS cou-

pled with the Microwave Sounding Unit (MSU) [Es-

cobar et al., 1993], for the Special Sensor Microwave /
Temperature (SSM/T) instrument on board the De-

fense Meteorological Satellite Program (DMSP) [Rieu

et al., 1996], and even for the high resolution infrared
spectrometer Advanced Infrared Radiation Sounder

(AIRS) of National Aeronautics and Space Admin-

istration (NASA) for the coming Earth Observation

System (EOS-PM-1) [Escobar et al., 1993] or for IASI

instrument [Aires et al., 1998. The great advantages

of MLP are the rapidity, the small amount of mem-

ory required and accuracy of results [Aires,1999]. The
MLP model is nonlinear, which is a crucial point for

the regression fit to the inverse Radiative Transfer

Equation (RTE). Furthermore, assumptions like the

linearity of the RTE or the Gaussian assumptions for

stochastic variables, are not required for the MLP.

In this paper, it is demonstrated that the inver°

sion procedure can be regularized by introducing var-

ious kind of a priori information about the physical

problem to the neural method. This may be done

within the three components of the neural network

technique: the architecture of the network, the learn-

ing algorithm and the learning data base. This ap-

proach overcomes the "black-box" modeling concep-
tion often associated with Neural Network methods.

We present here an application to the problem of

surface temperature and the atmospheric tempera-

ture profile retrievals with the IASI instrument. Pre-

vious studies have used information content analysis

to estimate the expected retrieval errors of IASI [Am-

ato and Serio, 1997; Prunet et al., 1998]; but this
kind of estimate is dependent on some assumptions

(Gaussian hypothesis, independence of first-guess and

observation, first-guess error covariance matrices of_

ten taken to be diagonal, i.e. no correlations among

the first-guess errors of the variables, etc), and in the
limited number of atmospheric situations that have
been examined.

Our neural network model is learned and tested

through a large number, 3500, of real atmospheric

situations as measured by radiosondes, taken from

the Thermodynamic Initial Guess Retrieval (TIGR)

data base [Chddin et al., 1985; Achard, 1991; Escobar,

1993b; ChevaUier et al., 1998; 2000]. These atmo-

spheric situations include very complex temperature

profiles that are often much more irregular than re-
analysis data or model ouput data. Rare situations

are also included so that the dataset represents, as

much as possible, all kinds of possible atmospheric
situations (initially for a pattern recognition pur-

pose). This complexity represents a higher variability

than that encountered in operational conditions with

model output data, so our estimation of the retrieval
errors could be an over-estimate. However the use of

a large and complex climatological dataset allows the

inversion model to be calibrated globally and even for

rare events. Furthermore, our analysis of the retrieval
error is made for realistic instrumental noise condi-

tions. Contrary to other approaches, no assumptions
about the physical problem are used, like the linear

or the Gaussian assumptions.

This paper is organized as follows. The physical

problem associated with our application is presented

in section 2. The neural network approach is discribed

in section 3. The data bases used in this study are

presented in section 4. Two applications of our neu-

ral technique are then presented: the surface tempera-

ture retrieval (section 5) and the atmospheric temper-



atureprofileretrieval(section6). Shortconclusions
andperspectivesaregiveninsection7.

2. Sounding the Atmosphere with the

IASI Instrument

2.1. Radiative Transfer in the Atmosphere

The radiance measured by an instrument at the

top of the atmosphere depends on the atmospheric
and surface properties. This dependence is described

by the Radiative Transfer Equation (RTE):

f P'°P OT v
I(v) = esB(Ts,v)7,_ + B(T(P),v) O_np(P)dlnP

J Pj

where v is the wavenumber (cm-1), e8 the Earth's

surface emissivity which may be a function of wavenum-

bet, B(T(P), v) the Planck function which indicates

the radiance emitted by a black-body at temperature

T and atmospheric pressure P, _-_ the transmission

factor between the satellite and the pressure level P.

_j, p _ j is often referred to as the weighting function.
The RTE expresses the two radiative contributions at

the top of the atmosphere: one arising from the sur-

face (first term in right hand side) and one from the

atmosphere (second term in right hand side). The

equation's complexity lies in the transmission factors

which depend on pressure, temperature, concentra-

tion of gases, spectroscopic characteristics of the ab-

sorbing gases (C02, H20, 03, ...).

To retrieve atmospheric variables from radiative

measurements at the top of the atmosphere, the in-

verse of equation (1) has to be computed. The ana-

lytical inversion of this function is not possible, only

an inference approach can be used [Twomey, 1977].

Contrary to the direct problem, which can advanta-
geously be estimated with high precision by a physi-

cal algorithm, the inverse problem r:eeds a method of

resolution based on a statistical representation of the

(unknown) inverse equation. Two general approaches
exist: use an inversion scheme for each observation

(we call this approach the local inversion) or model

the inverse RTE once and for all (we call this approach

the global inversion). The local inversion requires gen-

erally a good initial guess solution and a rapid and

accurate direct transfer model [Rodgers, 1976]. Even

if global inversion models can use a first-guess [Aires

et al., 2000], this is not required and no direct model
is used during operational use. Although global inver-

sion does not have these two limitations, it is a more

ambitious problem.

(1)

2.2. Instrumental Characteristics

The two major advances of the IASI instrument
are:

The dramatically increased number of spectral

channels: for each field of view, 8461 mea-

sures are available (covering the spectral range
from 645 to 2760 cm -1 with a resolution (un-

apodized) of 0.25 cm-1), with hundreds of them

sounding the atmospheric temperature. The

retrieval becomes an over-constrained problem
(more observations than degree of freedom).

The increased resolution power: with IASI the

resolution power is about A/dA __ 1200. Presently,

the resolution power of the TOVS (TIROS1-N

Observational Vertical Sounding)radiometer is
between 50 to 100.

It is expected that the vertical resolution and the

accuracy of retrievals will substantially increase: the

IASI mission requirements are an error of 1 K in at-

mospheric temperature and 10 % in relative humidity
profiles with respectively a 1 Km and 2 Km vertical
resolution.

The IASI noise is simulated [Cayla et al., 1995] by a
white Gaussian noise (this is a realistic assumption for

interferometers) with a Noise Equivalent (NEAT) at
280 K (Table 1). The NEAT at 280 K represents the

standard deviation st2so (v) of the Gaussian noise for a

given wave number v. At a different scene brightness

temperature T _, the standard deviation StT, (v) of the
Ganssian noise is computed by:

OB(Tb=280,v)

StT, (V) = OTb
DB[Tb-=T') " 8t280(V ) (2)

OTb

which shows that the noise level increases as T' de-

creases. Figure 1 illustrates the standard-deviation of

noise at different T _. It is expected that these car-
acteristics are an over-estimation of the actual noise

level for the intrument. Figure 2 shows the IASI spec-

trum averaged over the TIGR dataset with the cor-

responding noise standard deviation spectrum. Note

that some spectral regions could have a noise stan-

dard deviation larger than 2 K on average.

There are 4 field-of-view for each IASI samples,
covering an area of 12 to 9 kms at nadir. Assum-

ing homogeneous meteorological conditions, an aver-

age of the 4 pixel measures can be used to perform
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the retrievals: these 4 field-of-view provide redundant

measurements that can be averaged to reduce noise.

3. The Neural Network Inversion

Approach

Various neural inversion techniques have been de-

velopped, like the "Iterative Inversion" [Kindermann

and Linden, 1990], the "Distal Learning" [Jordan and

Rumelhart, 1992] or the "Distal Learning" optimized

by Monte-Carlo algorithm [Hidalgo and Gdmez- 7_e _itio,

1996]. We have chosen to use the "Direct Inversio,,"
approach for two reasons: it performs a global inver-

sion and it is possible to introduce a priori informa-

tion into the method. The a priori knowledge is any

information about the solution of the problem which
is in addition to the information contained in the data

set. In usual statistical techniques (like regression),

overcoming the "black-box" modeling conception (no

assumptions about the physical problem) improves re-

sults. Therefore, we have combined three approaches:

the structural stabilization of the network, regulariza-

tion of the learning algorithm by the input pertur-

bation technique and a physically optimized feature
selection process in the IASI data. Our numerical ex-

periments have shown that the introduction of this
kind of a priori information is very useful and makes

training possible with relatively few data.

3.1. Global Inversion

In the "Direct Inversion" technique, a MLP neural

network is used to estimate directly the mapping be-

tween tile IASI observations and retrieved geophysical

variables. In effect, the "trained" MLP is a statistical

model of the inverse RTE, providing once and for all

a global inversion. The learning algorithm (the more

expensive computational part) is performed off-line
only once. Then, the application of the neural net-
work model for the inversion of IASI observations is

quasi-immediate in the operational stage: no regres-

sions and no Jacobian computations are required.

Another advantage over classical physico/statistical

techniques is that a good initial condition for the in-

version is not needed. Moreover the required mem-

ory storage is very small. There's also no need for

a rapid direct model (necessary in iterative inversion

algorithms), where the speed is usually obtained by

linearizing the RTE and assuming uncorrelated Gaus-
sian errors.

3.2. MLP and Structural Stabilization of the
Architecture

The MLP network is a mapping model composed
of parallel processors called "neurons". These pro-

cessors are organized in distinct layers: the first layer

(number 0) represents the input X = (xi; 0 < i < too)

of the mapping where m0 is the number of neurons
in layer 0. The last layer (number L) represents the

output of the mapping Y = (yk;0 < k < mL). The

intermediate layers (0 < m < L) are called the "hid-

den layers". These layers are connected via neuronal

links (Figure 3): two neurons i and j between two

consecutive layers have synaptic connections associ-

ated with a synaptic weight w O. A neuron executes
two simple operations: first, it makes a weighted sum

of the inputs and then transfers this signal to its out-

put through a so called transfer, sigmoide of activa-

tion function like a(a) = tanh(a). The neuron j of

a hidden-layer of the output-layer has an output zj

given by: zj = a ( _ aJtj . zt) . Generally, for
leInputs(j)

regression problems, the output units have a transfer

function that is identity. For example, in a one hid-

den layer MLP, the k th output xk of the network is
defined as:

xk(Y) = E wjk "a(aj) = E wjk "a (E w_j "y, )
jEs1 jEs1 \iESo

where a is the sigmoide function, aj is the activity

of neuron j and Si is the ith layer of the network

(with i = 0 for the input layer). We have deliber-

ately omitted the usual bias term in this formula to

simplify notation. It has been demonstrated [Hornik

et al., 1989; Cybenko et al., 1989] that any continu-

ous function can be represented by a one-hidden layer
MLP.

The neuron acts, in its entire input space, as a

"fuzzy" linear discriminant: a neuron j cuts its in-

put space into two half subspaces separated by a

plane orthogonal to the vector of its input weights

{wO; l e Inputs(j)}. On one side of the "frontier" the
response of the neuron is 0, on the other side the re-

sponse is 1 and in the "fuzzy frontier" the response of

the neuron is quasi-linear (corresponding to the linear

part of the transfer function). So, the MLP network,

like linear regression, is very well adapted to high-
dimension data because its neurons acts in the entire

data space and not in a partition of this space like

some methods (radial basis function, splines interpo-

lators, etc).

(3)



How is the neural network structure defined ? The-

oretically, it has been demonstrated [Sontag, 1991]

that any inverse problem can be resolved by a two-

hidden layer MLP network since such neural networks

can take into account discontinuities and extremely

nonlinear variations (often present in inverse prob-

lems), in contrast to one-hidden layer MLPs that ap-

proximate continuous functions.

In practice, the answer can be different: we have

observed in our experiments that with noise-corrupted
data, a one-hidden layer can be sufficienl. Further-

more, our experiments show that smoom solutions

shall be obtained by a one hidden layer. This limi-

tation in the number of hidden layers is a structural

stabilization: the resulting reduction of the number of

free parameters (the synaptic weights W) regularizes

the neural estimation, producing a functional equiva-

lence between the desired function (the inverse of the

RTE) and its estimation (the trained neural network).

3.3. Learning Algorithm and Regularization

by Input Perturbation

Given an architecture (number of layers, neurons

and connections), all the information of the network

is contained in the weights W (the set of all synaptic

weights wij). The learning algorithm is the optimiza- -
tion technique that estimates the optimal network

parameters W = {wO} by minimizing a loss func-
tion C(W) so that the neural mapping approaches as

closely as possible the desired function. The most fre-

qently used criterion to adjust W is the mean square

error in network outputs:

C(W) = _ (yk(x; W) - tk)2P(tk/x)P(x)dtkdx

with tk the k th desired output component, Yk the k th

neural output component and P(.) the probability

density function of input data x. Practically, C(W)

is approximated by:

N
-- 1
c(w) = w) - tk) (5)

The Error Back-Propagation (BP) Algorithm [Rumel-

hart et al., 1986] is used to minimize C(W). It is a

stochastic steepest descent method very well adapted

to this neural architecture because the computational

cost is linearly related to the number of parameters.

To reduce the estimation sensitivity to input noise

in the data, we use the Input Perturbation technique.

(4)

It is an heuristic method to control the effective com-

plexity of the neural network mapping. The technique

consists, during the learning step, in adding to each

input a random vector representing the instrumen-

tal noise. It has been demonstrated [Bishop, 1996]

that, under certain conditions (low noise assumption),

training with noise is closely related to regularization

(or smoothing) technique. In the Input Perturbation

method, the usual error function C(W) (equation (4))
takes the form:

' ssiC(W) = -_ = (yk(x + 7; W) - tk)2P(tk/x)P(x)P(_)dtj

If the noise 77 is sufficiently small, we can expand the

network function yk(x + tl; w) to first order. Then, we
obtain the relation:

C(W) __ C(W) + _, . a(W) (7)

where _ is the noise variance and

-21m° mL S ( OYk _ 2\_Xi ]

is a Tikhonov penality terms (i.e. stabilizator) which

avoids solutions with high gradients (rapid varia-

tions of the neural function). So the minimization of

this new criterion C(W) constrains the solutions to

be smooth. This regularization technique limits the

number of degrees of freedom in the neural network

to bring its complexity nearer to the desired function.

This limitation reduces the class of possible solutions

and makes the solution of the problem unique.

3.4. Feature Selection for Dimension

Reduction

A MLP neural network can, in principle, be used

to map any input vector space to any output vector

space; however, in practice, the data representation

significantly affects the quality of the final results. In

particular, care must be exercised to avoid an over

emphasis on the noise component. Dimension reduc-

tion techniques can be used to present not only a more

compact representation but also more pertinent infor-

mation to the input of the neural network.

The curse oS dimensionality stipulates that it is

hard to apply a statistical technique to high dimen-

sion space data. We have seen in section 3.2 that
the MLP is a well-adapted technique in this kind of

problem, but practical problems still occur for high
dimensional data: for example, the number of pa-

rameters (the weights W in the MLP neural network)



increaseswith thenumberof inputs.Thiscanallow
excessofdegreesoffreedomin theneuralinterpolator
which,whencombinedwith theintroductionof non-
informativedata(i.e. noiseor spectralinformation
nonrelatedto retrievedquantities),maydistortthe
learningprocess:thequalitycriterionismoredifficult
tominimizeandthecomputationsarelonger.

Thus,thegoalofdimensionreductionis topresent
to theneuralnetworkthemostrelevantinformation
frominitial roughdata(i.e. noisyphysicalmeasure-
ments).Thereexisttwowaystoreducethedimension
of the inputdata[Jainand Zongker, 1997]: ]eature

extraction (a transformation of rough data by an op-

erator, linear or not) and feature selection (selection of

channels in input data) [Bishop,1996]. Feature selec-
tion is chosen here: for the retrieval of one geophysical

variable, we select channels that are, as far as possi-

ble, uniquely sensitive to this one atmospheric param-

eter. By studying the RTE Jacobians (derivatives of
the transmittances with respect to each geophysical

parameter), it is possible to analyze mutual informa-
tion between measured brightness temperatures and

geophysical variables [Chdruy et al., 1993]. But we

need to make a compromise between reducing data

dimension and preserving the redundant information

in rough data to alleviate effects of noise.

4. Radiosonde-Based Learning and

Test Datasets

4.1. Construction of an IASI Learning Data
Set: the TIGR Data Base

We use in our application the three TIGR (Ther-

modynamical Initial Guess Retrieval) data bases of

the ARA group: TIGR1 (861 atmospheres) [Chddin et

al._ 1985], its 1990 revised version TIGR2 (1761 atmo-
spheres: 322 in tropical air-mass, 388 in mid-latitude

type 1,354 in mid-latitude type 2, 104 in polar type

1 and 593 in polar type 2) [Achard, 1991; Escobar et

al., 1993] and its 1997 extended version TIGR3 (2311
atmospheres: same as TIGR2 but with an extended

tropical air-mass of 872 atmospheres) [Chevallier et

al., 1998]. All of these datasets are constituted from

more than 150,000 radiosonde measurements, sam-

pled for their diversity, and described by their tem-

perature and gas concentration profiles with a dis-
cretization of atmosphere into 40 layers (see Table 2).

This sampling includes a large number of rare events.
The final data base is composed of 3494 complex at-

mospheres. The minimum and maximum envelopes

of the TIGR3 atmospheric temperature profiles are

represented in Figure 4 to illustrate the large range

of variability that the radiosondes measurement rep-

resent. Not only the range of variability can be ex-

treme_ but also inversion in the profiles can product

complicated structures that are very challenging to

any retrieval method.

The 4A (Automatized Atmospheric Absorption At-

las) line-by-line forward radiative transfer algorithm

[Scott and Chddin, 1981; Tournier, 1995] has been
used to compute the IASI brightness temperatures

associated with tk.ese 3494 atmospheres for clear con-

dition over the s_a. The 4A algorithm allows for

an analytical computation of the physical Jacobians

(first derivatives of the transmittance with respect to

each variable like temperature, gas concentration, etc)

[Chdruy et al., 1995]. An illustration of such Jaco-

bians versus pressure is given in Figure 5 for the spec-

tral region 650- 800 cm -1 (15.5 #m - 12.5 pro).

The vertical integration of the atmospheric informa-

tion is illustrated in Figure 6 where Jacobians for 6

wave numbers in the 15.5 #rn - 12.5 _m spectral

region are shown. Channels with a limited extent

(mostly in the lower atmosphere), in terms of vertical
resolution, provide a more precise information than

the others (in the top of the atmosphere) because a

flat Jacobian indicates ambiguities in the retrieved

profile. The spacing of the peaks is also important

to reduce ambiguities. The concept of vertical reso-

lution depends on both the width and the spacing of

the channel's jacobians [Rodgers, 1990].

4.2. Improved Representation of the surface

temperature in TIGR

In the current TIGR data base, the surface temper-

ature Ts has been set equal to the temperature of the

40 th (lowest) atmospheric level T40. Ths does not

represent the actual situation, especial!y over land,

where the surface skin temperature can _iffer signif-

icantly from the near-surface air temperature in sys-

tematical ways with time-of-day, latitude, season and

location (see for example [Rossow et al., 1989]). For

better representativity we statistically generate, for

each atmosphere, a set of 10 different Ts using the
T40 information, based on the statistical distribution

(i.e. mean and standard deviation) of (T40-Ts) in a
data base of 150,000 radiosonde measurements. Thus,

for every atmosphere, knowing T40, we choose ran-

domly 10 Ts with the estimated density probability.

For example, in the tropical air-mass, we obtain a Ts

data base of 3220 atmospheres (322 x 10).



5. Surface Temperature Retrieval

This study is limited to clear sky oceanic situa-

tions and to the tropical air-mass case, emissivity is

set equal to 1.0. Ts in the tropical air-mass is very

important to climatological analyses.

5.1. Jacobian-Based Channel Selection

There are two spectral regions sensitive to the

surface characteristics in the IASI spectral domain:
12.5 _m - 10.2 /_m (= 800- 980 cm -1) and

4.0 pm - 3.6 pm (_ 2500-2750 cm-1). It is

worth noting that the second spectral region can be

contaminated by the sun during the day. However, in

these regions, some wavelengths are contaminated by

other atmospheric constituents. To eliminate the cor-
rupted channels and to reduce the dimensionality (as

explained in section 3.4), we use a channel selection

process based upon an analysis of the wavelength sen-

sitivity to Ts variations. We define sensitivity as the

mean variation I(v) for 1 K change of Ts (see equa-

tion (1)). We select, in these two windows, all chan-
nels with a sensitivity higher than a fixed threshold

(Figure 7). 357 channels are obtained in the first win-
dow (with a threshold of 70 % which realises a good

compromise) and 262 in the second window (with a
threshold of 85 % because channels are more sensitive

to surface temperature in this window).

5.2. Network Learning and Testing

The TIGR data base (section 4.2) is divided into

a learning base of 3000 atmospheres to make the re-

gression and a base of 220 atmospheres to test the

generalization ability of the trained neural mapping.

To retrieve the Ts variable, we use a one-hidden-

layer MLP neural network (see section 3.2 for struc-

tural stabilization). For the first window (800-980

cm -1) the neural structure is 357-20-1:357 neurons

in the input layer (357 selected brightness tempera-

tures), 20 neurons in the hidden layer and 1 neuron
in the output layer (representing Ts). For the second

window (2500-2750 cm -1), the structure is 262-20-1.

This neural mapping is then trained by the Er-

ror Back-Propagation algorithm on the learning base.

The Input Perturbation regularization technique is
used: simulated noise (according to the NEAT speci-

fications) is added to the input data during the learn-

ing step. The generalization ability of our model was

then tested on noisy data computed on the 220 test

atmospheres. The instantaneous retrieval of Ts from

noisy data gives a generalization RMS of approxi-

mately 0.4 K. Similar results are obtained using only

the second spectral window. Without noise, the RMS

error is less than 0.3 K, i.e., the retrieval error is signif-

icantly affected by measurement error, not the error

of the neural regression fit.

6. Atmospheric Temperature Profile

Retrieval

The 40 layels of 4A (see Table 2) were used to com-

pute the brightness temperature spectrum for clear

conditioL over ocean, but for the retrieval, the verti-

cal discretization of the atmosphere has been changed

(from 4A-levels to 1Km-levels) to match IASI spec-

ifications. The objective of this section is then to

retrieve the 32 lower atmospheric temperature of the

1Km-layer profiles.

6.1. Channel Selection

The choice of the channels for the retrieval of tem-

perature profiles is made so that they are, as much as

possible, sensitive to only one constant-concentration

gas; then, variations of I(u) in equation (1) result

mainly from temperature variations. Thus, the "C02,

NO2 (or both) absorbing-spectral regions" are used

for the retrieval of atmospheric temperature profiles:

the 15.5 #m - 12.5 pm (__ 645-800 cm -1) and the

4.7 #m - 4.0 pm (__ 2100- 2500 cm -1) spectral

regions.

To present the most relevant information to the

neural network inputs (section 3.4), we use a chan-

nel selection process. The feature selection method is
based on the study of the Jacobians in order to define

the sensitivity of a channel to atmospheric tempera-
ture. The mean Jacobian in TIGR3 indicates the sen-

sitivity relation between atmospheric layers and chan-

nels. The standard deviation of the Jacobian (around

the mean) is negligible except I:ear the surface; this
means that the mean Jacobian is robust to the at-

mospheric situation except in the lower atmospheric

layers.

The feature selection process has two steps. First,
channels are selected which satisfy quality criteria,

i.e. specifying, as unambiguously as possible: (1) the

Jacobian extent of a channel (characterized by the

area below the Jacobian) and the Jacobian width at

mid-height have to be smaller than fixed thresholds;
(2) the Jacobian center of a channel is not near sur-

face; and (3) the Jacobian has a single peak. For the

15.5 pm- 12.5 #rn spectral region, we have selected

442 channels within the 621 channels of the spectral



range(645- 800cm-1 with 0.25 crn -1 resolution).

The second step choses a vertically uniform subset

of the channels that meet the quality criteria. The

IASI instrument gives little information below 10 hPa,

so our retrievals will be limited to the pressure range
1013-10 hPa (32 layers with discretization of 1 Kin).

We have chosen 9 channels for each of 30 layers (the

previous 32 layers minus the two lowest layers sen-

sitive to surface temperature) between 1013 and 10

hPa. The final number of channel is 270. However,

it is important to note that the layers 23-28 have a

deficit in channels and that the sensitivity is higher

in the lower atmosphere (Figure 8).

The 4.7 #m - 4.0 pm spectral region is also impor-

tant for the at nospheric temperature profile retrieval

for two reasot s. First, the lower atmospheric Jaco-

bians are narr )wer than in the 15.5 #m - 12.5 prn

region allowin._ for a better vertical resolution. Sec-

ond, the cham.els are less affected by water vapor.

However, d m to the larger noise in this spectral

domain, the channel selection has tc be performed dif-

ferently than in the 15.5 pm - 12.5 pm region. The

IASI noise (see section 2.2) - the standard deviation of
the Gaussian noise - may be as large as a few degrees

for channels sensing the higher layers (low brightness

temperatures). The redundancy of the information

due to the number of channels doesn't compensate

this noise. Consequently, the spectral range used cov-

ers mainly the lower atmospheric layers. The Jaco-

bian analysis selects channels in _he 2140-2240 cm -1

spectral range (401 channels).

6.2. Network Learning and Testing

All the atmospheres of the learning and the test

bases are described by 30 atmospheric temperatures

(4A levels up to 7 hPa for 32 Km height) and the

corresponding 671 selected brightness temperatures

computed by 4A. The neural network structure used
for the regression is then 671-50-30:671 units in

the input layer (the 671 selected channels in the

15.5/_m - 12.5 #m and the 4.7 pm- 4.0 _m spectral

regions), 50 units in the hidden layer and 30 units in

the output layer (the 30 lower atmospheric tempera-
tures in 4A-levels, the interpolation to 32 1Km-level

being made a posteriori).

We have tested four configurations: for the "All-

air-masses" and the "Tropical-air-mass", with and

without the 4-pixels averaging (noise divided by 2,

see section 2.2).

6.2.1. "All-air-masses" configuration. We

have merged the TIGR1 and TIGR,3 data bases of

section 4.1 and the resulting 3155 atmospheres have

been randomly subdivided into a learning base of 2700

atmospheres and a test base of 455 atmospheres.

The RMS fit errors (given for the 32 atmospheric

1Km-layers) for the learning and the test sets are

shown in Figure 9-A for the 1-pixel configuration and

Figure 9-B for the 4-pixels configuration. We have an

overall good agreement between the computed and

"observed" temperature profiles: rms errors close to

1 K on average (less than lower than 1.3 K t^cept

near 10 hPa). Also, we can see that we are facing

some problems in two vertical regions:

In the upper layers of the atmosphere: IASI pro-

vides poor information above 20 hPa (.see Fig-

ure 5) due to the fact that the Jacobians of the

channels sounding these layers are more verti-

cally extensive than channels near surface and

their amplitudes are smaller. So, the compen-

sation phenomenon is more important in this
vertical region. Some of our experiments have

shown that the addition of the AMSU/A (also

planned for flight on board METOP-1) infor-

mation improves results in this vertical region.

In the near-surface layers: the difference T4o ¢

Ts complicate the retrieval due in part to the

compensation phenomenon (a under-estimation

of temperature in one layer is compensated by

an over-estimation in a near-by layer). Consid-
erations about specific neural networks compen-

sation phenomenon are given in [Aires et al.,
1999; Aires, 1999]. It is possible that the si-

multaneous retrieval of Ts and T40, being more

constrained, may solve this problem.

Thus, even though the TIGR database possesses

atmospheric situations with highly variable tempera-

ture profiles, the RMS errors obtained in Figures 9-A

and 9-B are close to the IASI objective (1 K of RMS

error for 1 Km in vertical resolution).

The use of 4-pixel averages uniformly decreases (by
about 0.1 K) the RMS in the atmospheric layers. This

relatively small improvement is due to the fact that

the solution regularization used to avoid noise effects

by the input perturbation method is sufficiently ef-

ficient, so the reduction of noise by pixel-averaging

has a reduced impact on the quality of the retrievals.
This fact means that our method is able to provide

good results for each pixel to maximize the horizon-



tal resolutionor toperformsceneselection.Fiveran-
domlychoosenexamplesof retrievalsin thetestset
areshownin Figure10.

6.2.2. "Tropical-air-mass" configuration. We
have merged the Tropical-TIGR1 and the Tropical-

TIGR3 data bases of section 4.1 and the resulting

1070 atmospheres have been randomly subdivided

into a learning base of 1000 atmospheres and a test
base of 70 atmospheres.

The RMS errors (given for the 32 atmospheric

1Km-layers) in the learning and the test set are given

in the Figure 9-C for the 1-pixel configuration and in

the Figure 9-D for the 4-pixels configuration. We see
that the RMS profile is significantly improved at 1 K,

so the. specialization of the neural network to the trop-

ical air-mass is important. As above, the RMS is also
decre,_sed by about 0.1 K with the 4-pixels average

configuration.

It .s important to note that the specialization of
the n,mral network on one air mass:

• improves the retrievals;

• requires a training data base with a larger num-

ber of atmospheres.

In this case, the 1070 tropical atmospheres are not

sufficient, so differences between the learning and the

test bases are not negligible. Future work should ad-

dress this very important problem of the full repre-

sentativity of the learning and testing bases.

7. Conclusion and Perspectives

A neural network approach uses a maximum of a

priori information to limit the number of free param-
eters in the neural model so as to constrain the re-

trieval of surface and atmospheric temperatures as a

"better-posed" problem. The method is trained us-
ing the TIGR data base, i.e. a vast and complex

set of atmospheric situations (from radiosonde mea-

surements which are much more irregular than model

output) with a wide range of radiosonde conditions

including rare events. This fact is important to judge

the quality of our results. The surface temperature

for tropical situations displays a RMS error of 0.4 K

for instantaneous retrievals). Results for atmospheric

temperature profile retrievals are given for four con-

figurations ("All-air-masses" or "Tropical-air-mass",

with and without the 4-pixels average). Results are

close to the specifications of the WMO for the "Allo

air-masses" configurations: 1 K of error for the instan-

taneous temperature retrieval with 1 Km vertical res-

olution. The specialization to the "Tropical-air-mass"

significantly improves the results, which means that
using a specialized neural network for a few different

air-masses is the good strategy, but a larger dataset is
then required to trained these specialized models. It

is important to note that the results obtained for the

IASI retrievals and entirely depend on the complexity
of the dataset used to perform the statistics. Thus,

it has been demonstrated in this work the potential

of the IASI instrument to achieve the WMO specifi-

cations for realistic conditions even for the complex
situations included here. This new instrument is a

clear advance over current instruments. The MLP in-

version technique developped here for the processing

of IASI observations is flexible enough to introduce a

priori information in the retrieval scheme, is robust

to noise, and is accurate and very fast.

We plan to use independently a neural network for

the two other air-masses (temperate and polar) by

increasing the TIGR data base. Another idea is to use

this methodology with more channels so as to retrieve

not only the surface temperature and the temperature

profile, but also water vapor and ozone profiles. The

simultaneous retrieval of these variables is expected to

exploit the correlations between variables in order to

better constrain the inversion process. Considerable

improvements are expected by the use in parallel of

AMSU/A observations. Finally, further improvement

may also be expected by the introduction of a first-

guess solution in the MLP inversion [cf. Aires et al.,

20003.
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Table 1.

v NEAT [ v NEAT

incm-1 ink [ incrn -1 inK

650 0.28

770 0.28

790 0.34

980 0.34

I000 0.28

1070 0.28

1080 0.34

1200 0.34

1210 0.28

1650 0.28

1660 0.34

2090 0.5

2100 0.5

2420 0.5

2430 0.6
2500 0.77

2600 1.1

2700 1.58
2760 1.97



Table2. The40pressurelevelsofthe4Aalgorithm

Level PressureAltitude Level PressureAltitude
in hPa inKm in hPa in Km

1 0.05 68.4
2 0.09 64.3
3 0.17 59.9
4 0.30 56.0
5 O.55 51.8
6 1.00 47.7
7 1.50 44.9
8 2.23 42.2
9 3.33 39.4

10 4.98 36.6

11 7.43 33.9

12 11.11 31.1

13 16.60 28.3

14 24.79 25.6

15 37.04 22.8
16 45.73 21.3

17 56.46 19.9

18 69.71 18.4

19 86.07 17.0

20 106.27 15.5

21 131.20 14.1

22 161.99 12.6

23 200.00 11.1

24 222.65 10.4

25 247.90 9.7

26 275.95 8.9

27 307.20 8.2

28 341.99 7.4

29 380.73 6.7

30 423.85 6.0

31 471.86 5.2

32 525.00 4.5

33 584.80 3.7

34 651.04 3.0

35 724.73 2.3

36 800.00 1.6

37 848.69 1.2

38 900.33 0.8

39 955.12 0.4

40 1013.00 0.0



Figure 1. Standard Deviation of IASI instrument noise for different brightness temperature measurement T'

Figure 2. Mean IASI spectrum (left) and corresponding standard deviation of IASI instrumental noise (right)

Figure 3. Architecture of a MLP neural network with L layers, with inputs X and outputs Y

Figure 4. Minimal and maximal envelope of TIGR3 atmospheric temperature profiles for A "All-Air-Masses", B

"Tropical-Air-Mass", C "Temperate 1 Air-Mass", D "Temperate 2 Air-Mass", E "Polar 1 Air-Mass", and F "Polar
2 Air-Mass"

Figure 5. Mean (for TIGR3 atmospheres) temperature Jacobian in the 15.5 #m - 12.5 pm spectral region

Figure 6. Atmos _heric temperature Jacobian profile for IASI and for 6 channels in the 15.5 #m - 12.5 #m

spectral region

Figure 7. Sensitivity in % to a 1 K-perturbation of surface temperature versus wave number, in the two IASI

windows (800-980 crn -1 and 2500-2750 crn -1)

Figure 8. Mean temperature Jacobian on TIGR3 for the 270 channels (ordered by maximum absorp ion altitude)

selected on the 15.5 #m - 12.5 #rn spectral region

Figure 9. RMS error profile for the atmospheric temperature retrieval in the learning set (continuou" line) and in

the generalization set (discontinuous line) : A for configuration "All-air-masses/1 pixel", B for config xration "All-

air-masses/4 pixels", C for configuration "Tropical-air-mass/1 pixel", and D for configuration "Tropical-air-mass/4

pixels".

Figure 10. Five atmospheric temperature profile retrieval examples in the configuration "All-air-masses/1 pixel"
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